{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e02ccafe-e04d-4312-acba-e41cf7b1c021", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/smgr/.pyenv/versions/co4/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "from co3 import Mapper\n", "\n", "import vegetables" ] }, { "cell_type": "markdown", "id": "c0914069-7f3c-4213-8d34-f7566033e054", "metadata": {}, "source": [ "## Development notes\n", "- No registry actually needs to take place if there's a default type2component map or one supplied on creation. Can just collect right out of the gate\n", "- Need connective function (type to collation) and attribute map. Do we need to this with a subclass? If a func is passed in on init, I can type it appropriately I guess `Callable[[type[CO3],str,str|None],dict]`" ] }, { "cell_type": "code", "execution_count": 3, "id": "7d80f7b9-7458-4ad4-8c1a-3ea56e796b4e", "metadata": {}, "outputs": [], "source": [ "vegetable_mapper = Mapper(\n", " vegetables.Vegetable,\n", " vegetables.vegetable_schema\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "d24d31b4-c4a6-4a1e-8bea-c44378aadfdd", "metadata": {}, "outputs": [], "source": [ "# not valid; tables need to be wrapped in CO3 Components\n", "vegetable_mapper.attach(\n", " vegetables.Vegetable,\n", " vegetables.vegetable_table,\n", ")" ] }, { "cell_type": "code", "execution_count": 6, "id": "f9408562-bf50-4522-909c-318557f85948", "metadata": {}, "outputs": [], "source": [ "# manually attach component\n", "vegetable_mapper.attach(\n", " vegetables.Tomato,\n", " vegetables.vegetable_schema.get_component('tomato'),\n", " coll_groups={\n", " 'aging': vegetables.vegetable_schema.get_component('tomato_aging_states'),\n", " 'cooking': vegetables.vegetable_schema.get_component('tomato_cooking_states'),\n", " },\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "id": "05fdd404-87ee-4187-832f-2305272758ae", "metadata": {}, "outputs": [], "source": [ "# attach by name in schema\n", "vegetable_mapper.attach(\n", " vegetables.Tomato,\n", " 'tomato',\n", " coll_groups={\n", " 'aging': 'tomato_aging_states',\n", " 'cooking': 'tomato_cooking_states',\n", " },\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "e9b6af49-a69d-41cc-beae-1b6f171cd2f5", "metadata": {}, "outputs": [], "source": [ "# attach entire type hierarchy w/ type->name map\n", "vegetable_mapper.attach_hierarchy(\n", "# this might make more sense during init\n", " lambda x:x.__name__.lower())\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "2e4336ab-5b5f-484d-815d-164d4b6f40a0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'co3_root': vegetables.Vegetable,\n", " 'schema': ,\n", " 'collector': ,\n", " 'composer': ,\n", " 'attribute_comps': {vegetables.Tomato: },\n", " 'collation_groups': defaultdict(dict,\n", " {vegetables.Tomato: {'aging': ,\n", " 'cooking': }})}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vars(vegetable_mapper)" ] }, { "cell_type": "code", "execution_count": 10, "id": "c16786d4-0b71-42d9-97f7-7893c542104e", "metadata": {}, "outputs": [], "source": [ "tomato = vegetables.Tomato('t1', 5)" ] }, { "cell_type": "code", "execution_count": 11, "id": "884d6753-c763-4e71-824a-711436e203e1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tomato" ] }, { "cell_type": "code", "execution_count": null, "id": "137d0bf1-940d-448c-91e9-01e7fc4f31b4", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "co3", "language": "python", "name": "co3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 5 }