co3/examples/.ipynb_checkpoints/mapper-checkpoint.ipynb

146 lines
3.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e02ccafe-e04d-4312-acba-e41cf7b1c021",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/smgr/.pyenv/versions/co4/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"from co3 import Mapper\n",
"\n",
"import vegetables"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7d80f7b9-7458-4ad4-8c1a-3ea56e796b4e",
"metadata": {},
"outputs": [],
"source": [
"vegetable_mapper = Mapper(\n",
" vegetables.Vegetable,\n",
" vegetables.vegetable_schema\n",
")\n",
"\n",
"vegetable_mapper.attach(\n",
" vegetables.Vegetable,\n",
" vegetables.vegetable_table,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f9408562-bf50-4522-909c-318557f85948",
"metadata": {},
"outputs": [],
"source": [
"# manually attach component\n",
"vegetable_mapper.attach(\n",
" vegetables.Tomato,\n",
" vegetables.tomato_table,\n",
" coll_groups={\n",
" 'aging': vegetables.vegetable_schema.get_component('tomato_aging_states'),\n",
" 'cooking': vegetables.vegetable_schema.get_component('tomato_cooking_states'),\n",
" },\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05fdd404-87ee-4187-832f-2305272758ae",
"metadata": {},
"outputs": [],
"source": [
"# attach by name in schema\n",
"vegetable_mapper.attach(\n",
" vegetables.Tomato,\n",
" vegetables.tomato_table,\n",
" coll_groups={\n",
" 'aging': 'tomato_aging_states',\n",
" 'cooking': 'tomato_cooking_states',\n",
" },\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9b6af49-a69d-41cc-beae-1b6f171cd2f5",
"metadata": {},
"outputs": [],
"source": [
"# attach entire type hierarchy w/ type->name map\n",
"vegetable_mapper.attach_hierarchy(\n",
"# this might make more sense during init\n",
" lambda x:x.__name__.lower())\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "2e4336ab-5b5f-484d-815d-164d4b6f40a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"defaultdict(dict,\n",
" {vegetables.Tomato: {'aging': <co3.components.SQLTable at 0x7ece94358aa0>,\n",
" 'cooking': <co3.components.SQLTable at 0x7ece94358ad0>}})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vegetable_mapper.collation_groups"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d416f9cd-2cb6-4a6e-bab7-86ac21216b8c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "co3",
"language": "python",
"name": "co3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}