refactor core python package, implement base CLI

This commit is contained in:
2025-12-09 19:20:35 -08:00
parent 52c5b6a484
commit d3125b707d
17 changed files with 898 additions and 650 deletions

3
monobiome/__init__.py Normal file
View File

@@ -0,0 +1,3 @@
from importlib.metadata import version
__version__ = version("monobiome")

View File

@@ -1,5 +1,6 @@
from monobiome.cli import create_parser, configure_logging from monobiome.cli import create_parser, configure_logging
def main() -> None: def main() -> None:
parser = create_parser() parser = create_parser()
args = parser.parse_args() args = parser.parse_args()
@@ -16,4 +17,3 @@ def main() -> None:
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@@ -1,7 +1,7 @@
import argparse
import logging import logging
import argparse
from monobiome.cli import generate, scheme from monobiome.cli import scheme, palette
logger: logging.Logger = logging.getLogger(__name__) logger: logging.Logger = logging.getLogger(__name__)
@@ -26,7 +26,7 @@ def create_parser() -> argparse.ArgumentParser:
subparsers = parser.add_subparsers(help="subcommand help") subparsers = parser.add_subparsers(help="subcommand help")
generate.register_parser(subparsers) palette.register_parser(subparsers)
scheme.register_parser(subparsers) scheme.register_parser(subparsers)
return parser return parser

View File

@@ -1,31 +0,0 @@
import argparse
def generate_scheme(args: argparse.Namespace) -> None:
run_from_json(args.parameters_json, args.parameters_file)
def register_parser(subparsers: _SubparserType) -> None:
parser = subparsers.add_parser(
"generate",
help="generate theme variants"
)
parser.add_argument(
"-m",
"--contrast-method",
type=str,
help="Raw JSON string with train parameters",
)
parser.add_argument(
"-c",
"--contrast-level",
type=str,
help="Raw JSON string with train parameters",
)
parser.add_argument(
"-b",
"-base-lightness",
type=str,
help="Minimum lightness level",
)
parser.set_defaults(func=generate_scheme)

51
monobiome/cli/palette.py Normal file
View File

@@ -0,0 +1,51 @@
import argparse
from pathlib import Path
from monobiome.util import _SubparserType
from monobiome.palette import generate_palette
def register_parser(subparsers: _SubparserType) -> None:
parser = subparsers.add_parser(
"palette",
help="generate primary palette"
)
parser.add_argument(
"-n",
"--notation",
type=str,
default="hex",
choices=["hex", "oklch"],
help="Color notation to export (either hex or oklch)",
)
parser.add_argument(
"-f",
"--format",
type=str,
default="toml",
choices=["json", "toml"],
help="Format of palette file (either JSON or TOML)",
)
parser.add_argument(
"-o",
"--output",
type=str,
help="Output file to write palette content",
)
parser.set_defaults(func=handle_palette)
def handle_palette(args: argparse.Namespace) -> None:
notation = args.notation
file_format = args.format
output = args.output
palette_text = generate_palette(notation, file_format)
if output is None:
print(palette_text)
else:
with Path(output).open("w") as f:
f.write(palette_text)

View File

@@ -0,0 +1,154 @@
import argparse
from pathlib import Path
from monobiome.util import _SubparserType
from monobiome.scheme import generate_scheme
from monobiome.constants import monotone_h_map
def register_parser(subparsers: _SubparserType) -> None:
parser = subparsers.add_parser(
"scheme",
help="create scheme variants"
)
parser.add_argument(
"mode",
type=str,
choices=["dark", "light"],
help="Scheme mode (light or dark)"
)
parser.add_argument(
"biome",
type=str,
choices=list(monotone_h_map.keys()),
help="Biome setting for scheme."
)
parser.add_argument(
"-m",
"--metric",
type=str,
default="oklch",
choices=["wcag", "oklch", "lightness"],
help="Metric to use for measuring swatch distances."
)
# e.g., wcag=4.5; oklch=0.40; lightness=40
parser.add_argument(
"-d",
"--distance",
type=float,
default=0.40,
help="Distance threshold for specified metric",
)
parser.add_argument(
"-o",
"--output",
type=str,
help="Output file to write scheme content",
)
# these params remain rooted in lightness; no need to accommodate metric
# given these are monotone adjustments. You *could* consider rooting these
# in metric units, but along monotones, distance=lightness and WCAG isn't a
# particularly good measure of perceptual distinction, so we'd prefer the
# former.
parser.add_argument(
"--l-base",
type=int,
default=20,
help="Minimum lightness level (default: 20)",
)
parser.add_argument(
"--l-step",
type=int,
default=5,
help="Lightness step size (default: 5)",
)
# gaps
parser.add_argument(
"--fg-gap",
type=int,
default=50,
help="Foreground lightness gap (default: 50)",
)
parser.add_argument(
"--grey-gap",
type=int,
default=30,
help="Grey lightness gap (default: 30)",
)
parser.add_argument(
"--term-fg-gap",
type=int,
default=60,
help="Terminal foreground lightness gap (default: 60)",
)
parser.set_defaults(func=handle_scheme)
def handle_scheme(args: argparse.Namespace) -> None:
output = args.output
mode = args.mode
biome = args.biome
metric = args.metric
distance = args.distance
l_base = args.l_base
l_step = args.l_step
fg_gap = args.fg_gap
grey_gap = args.grey_gap
term_fg_gap = args.term_fg_gap
full_color_map = {
"red": "red",
"orange": "orange",
"yellow": "yellow",
"green": "green",
"cyan": "cyan",
"blue": "blue",
"violet": "violet",
"magenta": "orange",
}
term_color_map = {
"red": "red",
"yellow": "yellow",
"green": "green",
"cyan": "blue",
"blue": "blue",
"magenta": "orange",
}
vim_color_map = {
"red": "red",
"orange": "orange",
"yellow": "yellow",
"green": "green",
"cyan": "green",
"blue": "blue",
"violet": "blue",
"magenta": "red",
}
# vim_color_map = full_color_map
scheme_text = generate_scheme(
mode,
biome,
metric,
distance,
l_base,
l_step,
fg_gap,
grey_gap,
term_fg_gap,
full_color_map,
term_color_map,
vim_color_map,
)
if output is None:
print(scheme_text)
else:
with Path(output).open("w") as f:
f.write(scheme_text)

View File

@@ -1,157 +1,121 @@
import tomllib
from importlib.resources import files
import numpy as np import numpy as np
# SET LIGHTNESS CONTROL POINTS from monobiome.curve import (
# L_points = [10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98] l_maxC_h,
L_points = list(range(10, 98+1)) bezier_y_at_x,
)
# FIXED MONOBIOME PARAMETERS parameters_file = files("monobiome.data") / "parameters.toml"
L_resolution = 5 # step size along lightness dim parameters = tomllib.load(parameters_file.open("rb"))
L_space = np.arange(0, 100+L_resolution, L_resolution)
monotone_C_map = { L_min: int = parameters.get("L_min", 10)
"alpine": 0, L_max: int = parameters.get("L_max", 98)
"badlands": 0.011, L_step: int = parameters.get("L_step", 5)
"chaparral": 0.011,
"savanna": 0.011,
"grassland": 0.011,
"tundra": 0.011,
}
h_weights = { L_points: list[int] = list(range(L_min, L_max+1))
"red": 3.0, L_space = np.arange(0, 100 + L_step, L_step)
"orange": 3.8, # 3.6
"yellow": 3.8, # 4.0
"green": 3.8,
"blue": 3.4, # 3.8
}
h_L_offsets = {
"red": 0, # -1,
"orange": -5.5, # -3,
"yellow": -13.5, # -8
"green": -11, # -8
"blue": 10, # 14
}
h_C_offsets = {
"red": 0, # 0
"orange": -0.01, # -0.02
"yellow": -0.052, # -0.08
"green": -0.088, # -0.105
"blue": 0.0, # 0.01
}
monotone_h_map = { monotone_C_map = parameters.get("monotone_C_map", {})
"alpine": 0, h_weights = parameters.get("h_weights", {})
"badlands": 29, h_L_offsets = parameters.get("h_L_offsets", {})
"chaparral": 62.5, h_C_offsets = parameters.get("h_C_offsets", {})
"savanna": 104, monotone_h_map = parameters.get("monotone_h_map", {})
"grassland": 148, accent_h_map = parameters.get("accent_h_map", {})
"tundra": 262,
}
accent_h_map = {
"red": 29,
"orange": 62.5,
"yellow": 104,
"green": 148,
"blue": 262,
}
h_map = {**monotone_h_map, **accent_h_map} h_map = {**monotone_h_map, **accent_h_map}
"""
Compute chroma maxima at provided lightness levels across hues.
v111_L_space = list(range(15, 95+1, 5)) A map with max chroma values for each hue across lightness space
v111_hC_points = {
"red": [ {
0.058, "red": [ Cmax@L=10, Cmax@L=11, Cmax@L=12, ... ],
0.074, "orange": [ Cmax@L=10, Cmax@L=11, Cmax@L=12, ... ],
0.092, ...
0.11,
0.128,
0.147,
0.167,
0.183,
0.193,
0.193,
0.182,
0.164,
0.14,
0.112,
0.081,
0.052,
0.024,
],
"orange": [
0.030,
0.038,
0.046,
0.058,
0.07,
0.084,
0.1,
0.114,
0.125,
0.134,
0.138,
0.136,
0.128,
0.112,
0.092,
0.064,
0.032,
],
"yellow": [
0.02,
0.024,
0.03,
0.036,
0.044,
0.05,
0.06,
0.068,
0.076,
0.082,
0.088,
0.088,
0.086,
0.082,
0.072,
0.058,
0.04,
],
"green": [
0.0401,
0.048,
0.056,
0.064,
0.072,
0.08,
0.09,
0.098,
0.104,
0.108,
0.11,
0.108,
0.102,
0.094,
0.084,
0.072,
0.05,
],
"blue": [
0.06,
0.072,
0.084,
0.096,
0.106,
0.116,
0.124,
0.13,
0.132,
0.128,
0.122,
0.11,
0.096,
0.08,
0.064,
0.044,
0.023,
],
} }
"""
Lspace_Cmax_Hmap = {
h_str: [l_maxC_h(_L, _h) for _L in L_space]
for h_str, _h in h_map.items()
}
"""
Set QBR curves, *unbounded* chroma curves for all hues
1. Raw bezier chroma values for each hue across the lightness space
Lpoints_Cqbr_Hmap = {
"red": [ Bezier@L=10, Bezier@L=11, Bezier@L=12, ... ],
...
}
2. Three bezier control points for each hue's chroma curve
QBR_ctrl_Hmap = {
"red": np.array([
[ x1, y1 ],
[ x2, y2 ],
[ x3, y3 ]
]),
...
}
"""
Lpoints_Cqbr_Hmap = {}
QBR_ctrl_Hmap = {}
for h_str, _h in monotone_h_map.items():
Lpoints_Cqbr_Hmap[h_str] = np.array(
[monotone_C_map[h_str]]*len(L_points)
)
for h_str, _h in accent_h_map.items():
Lspace_Cmax = Lspace_Cmax_Hmap[h_str]
# get L value of max chroma; will be a bezier control
L_Cmax_idx = np.argmax(Lspace_Cmax)
L_Cmax = L_space[L_Cmax_idx]
# offset control point by any preset x-shift
L_Cmax += h_L_offsets[h_str]
# and get max C at the L offset
Cmax = l_maxC_h(L_Cmax, _h)
# set 3 control points; shift by any global linear offest
C_offset = h_C_offsets.get(h_str, 0)
p_0 = np.array([0, 0])
p_Cmax = np.array([L_Cmax, Cmax + C_offset])
p_100 = np.array([100, 0])
B_L_points = bezier_y_at_x(
p_0, p_Cmax, p_100,
h_weights.get(h_str, 1),
L_points
)
Lpoints_Cqbr_Hmap[h_str] = B_L_points
QBR_ctrl_Hmap[h_str] = np.vstack([p_0, p_Cmax, p_100])
"""
Bezier chroma values, but bounded to attainable gamut colors (bezier fit
can produce invalid chroma values)
h_L_points_Cstar = {
"red": [ bounded-bezier@L=10, bounded-bezier@L=11, ... ],
...
}
"""
Lpoints_Cstar_Hmap = {}
for h_str, L_points_C in Lpoints_Cqbr_Hmap.items():
_h = h_map[h_str]
Lpoints_Cstar_Hmap[h_str] = [
max(0, min(_C, l_maxC_h(_L, _h)))
for _L, _C in zip(L_points, L_points_C, strict=True)
]

77
monobiome/curve.py Normal file
View File

@@ -0,0 +1,77 @@
from functools import cache
import numpy as np
from coloraide import Color
def quad_bezier_rational(
P0: float,
P1: float,
P2: float,
w: float,
t: np.array,
) -> np.array:
"""
Compute the point values of a quadratic rational Bezier curve.
Uses `P0`, `P1`, and `P2` as the three control points of the curve. `w`
controls the weight toward the middle control point ("sharpness" of the
curve"), and `t` is the number of sample points used along the curve.
"""
t = np.asarray(t)[:, None]
num = (1-t)**2*P0 + 2*w*(1-t)*t*P1 + t**2*P2
den = (1-t)**2 + 2*w*(1-t)*t + t**2
return num / den
def bezier_y_at_x(
P0: float,
P1: float,
P2: float,
w: float,
x: float,
n: int = 400,
) -> np.array:
"""
For the provided QBR parameters, provide the curve value at the given
input.
"""
t = np.linspace(0, 1, n)
B = quad_bezier_rational(P0, P1, P2, w, t)
x_vals, y_vals = B[:, 0], B[:, 1]
return np.interp(x, x_vals, y_vals)
@cache
def l_maxC_h(
_l: float,
_h: float,
space: str = 'srgb',
eps: float = 1e-6,
tol: float = 1e-9
) -> float:
"""
Binary search for max attainable OKLCH chroma at fixed lightness and hue.
Parameters:
_l: lightness
_h: hue
Returns:
Max in-gamut chroma at provided lightness and hue
"""
def chroma_in_gamut(_c: float) -> bool:
color = Color('oklch', [_l/100, _c, _h])
return color.convert(space).in_gamut(tolerance=tol)
lo, hi = 0.0, 0.1
while chroma_in_gamut(hi):
hi *= 2
while hi - lo > eps:
m = (lo + hi) / 2
lo, hi = (m, hi) if chroma_in_gamut(m) else (lo, m)
return lo

View File

@@ -1,178 +0,0 @@
import json
from pathlib import Path
from functools import cache
import numpy as np
from pprint import pprint
from coloraide import Color
from monobiome.constants import (
L_points,
L_resolution,
L_space,
monotone_C_map,
h_weights,
h_L_offsets,
h_C_offsets,
monotone_h_map,
accent_h_map,
h_map,
)
@cache
def L_maxC_h(L, h, space='srgb', eps=1e-6, tol=1e-9):
"""
Binary search for max attainable OKLCH chroma at fixed lightness and hue.
Parameters:
L: lightness percentage
"""
def C_in_gamut(C):
return Color('oklch', [L/100, C, h]).convert(space).in_gamut(tolerance=tol)
lo, hi = 0.0, 0.1
while C_in_gamut(hi):
hi *= 2
while hi - lo > eps:
m = (lo + hi) / 2
lo, hi = (m, hi) if C_in_gamut(m) else (lo, m)
Cmax = lo
# c_oklch = Color('oklch', [L, Cmax, h])
# c_srgb = c_oklch.convert('srgb')
return Cmax
def quad_bezier_rational(P0, P1, P2, w, t):
"""
Compute the point values of a quadratic rational Bezier curve.
Uses `P0`, `P1`, and `P2` as the three control points of the curve. `w`
controls the weight toward the middle control point ("sharpness" of the
curve"), and `t` is the number of sample points used along the curve.
"""
t = np.asarray(t)[:, None]
num = (1-t)**2*P0 + 2*w*(1-t)*t*P1 + t**2*P2
den = (1-t)**2 + 2*w*(1-t)*t + t**2
return num / den
def bezier_y_at_x(P0, P1, P2, w, x_query, n=400):
"""
For the provided QBR parameters, provide the curve value at the given
input.
"""
t = np.linspace(0, 1, n)
B = quad_bezier_rational(P0, P1, P2, w, t)
x_vals, y_vals = B[:, 0], B[:, 1]
return np.interp(x_query, x_vals, y_vals)
def Lspace_Cmax_Hmap(h_map: dict[str, float], L_space):
"""
Compute chroma maxima at provided lightness levels across hues.
Parameters:
h_map: map from hue names to hue values
L_space: array-like set of lightness values
Returns:
A map with max chroma values for each hue across lightness space
{
"red": [ Cmax@L=10, Cmax@L=11, Cmax@L=12, ... ],
"orange": [ Cmax@L=10, Cmax@L=11, Cmax@L=12, ... ],
...
}
"""
# compute C max values over each point in L space
h_Lspace_Cmax = {
h_str: [max_C_Lh(_L, _h) for _L in L_space]
for h_str, _h in h_map.items()
}
return h_Lspace_Cmax
def ():
"""
raw bezier chroma values for each hue across the lightness space
h_L_points_C = {
"red": [ Bezier@L=10, Bezier@L=11, Bezier@L=12, ... ],
...
}
three bezier control points for each hue's chroma curve
h_ctrl_L_C = {
"red": np.array([
[ x1, y1 ],
[ x2, y2 ],
[ x3, y3 ]
]),
...
}
"""
# compute *unbounded* chroma curves for all hues
h_L_points_C = {}
h_ctrl_L_C = {}
for h_str, _h in monotone_h_map.items():
h_L_points_C[h_str] = np.array([monotone_C_map[h_str]]*len(L_points))
for h_str, _h in accent_h_map.items():
Lspace_Cmax = h_Lspace_Cmax[h_str]
# get L value of max chroma; will be a bezier control
L_Cmax_idx = np.argmax(Lspace_Cmax)
L_Cmax = L_space[L_Cmax_idx]
# offset control point by any preset x-shift
L_Cmax += h_L_offsets[h_str]
# and get max C at the L offset
Cmax = max_C_Lh(L_Cmax, _h)
# set 3 control points; shift by any global linear offest
C_offset = h_C_offsets.get(h_str, 0)
p_0 = np.array([0, 0])
p_Cmax = np.array([L_Cmax, Cmax + C_offset])
p_100 = np.array([100, 0])
B_L_points = bezier_y_at_x(p_0, p_Cmax, p_100, h_weights.get(h_str, 1), L_points)
h_L_points_C[h_str] = B_L_points
h_ctrl_L_C[h_str] = np.vstack([p_0, p_Cmax, p_100])
def ():
"""
bezier chroma values, but bounded to attainable gamut colors (bezier fit can produce invalid chroma values)
h_L_points_Cstar = {
"red": [ bounded-bezier@L=10, bounded-bezier@L=11, ... ],
...
}
"""
# compute full set of final chroma curves; limits every point to in-gamut max
h_LC_color_map = {}
h_L_points_Cstar = {}
for h_str, L_points_C in h_L_points_C.items():
_h = h_map[h_str]
h_L_points_Cstar[h_str] = [
max(0, min(_C, max_C_Lh(_L, _h)))
for _L, _C in zip(L_points, L_points_C)
]
# if __name__ == "__main__":

54
monobiome/palette.py Normal file
View File

@@ -0,0 +1,54 @@
import json
from functools import cache
from importlib.metadata import version
from coloraide import Color
from monobiome.constants import (
h_map,
L_points,
Lpoints_Cstar_Hmap,
)
@cache
def compute_hlc_map(notation: str) -> dict[str, dict[int, str]]:
hlc_map = {}
for h_str, Lpoints_Cstar in Lpoints_Cstar_Hmap.items():
_h = h_map[h_str]
hlc_map[h_str] = {}
for _l, _c in zip(L_points, Lpoints_Cstar, strict=True):
oklch = Color('oklch', [_l/100, _c, _h])
if notation == "hex":
srgb = oklch.convert('srgb')
c_str = srgb.to_string(hex=True)
elif notation == "oklch":
ol, oc, oh = oklch.convert('oklch').coords()
c_str = f"oklch({ol*100:.1f}% {oc:.4f} {oh:.1f})"
hlc_map[h_str][_l] = c_str
return hlc_map
def generate_palette(
notation: str,
file_format: str,
) -> str:
mb_version = version("monobiome")
hlc_map = compute_hlc_map(notation)
if file_format == "json":
hlc_map["version"] = mb_version
return json.dumps(hlc_map, indent=4)
else:
toml_lines = [f"version = {mb_version}", ""]
for _h, _lc_map in hlc_map.items():
toml_lines.append(f"[{_h}]")
for _l, _c in _lc_map.items():
toml_lines.append(f'l{_l} = "{_c}"')
toml_lines.append("")
return "\n".join(toml_lines)

View File

@@ -1,131 +1,176 @@
import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy.interpolate import interp1d, CubicSpline, BSpline
from monobiome.constants import ( from monobiome.constants import (
L_points,
L_space,
h_weights,
monotone_h_map,
accent_h_map,
h_map, h_map,
) L_space,
from monobiome.curves import ( L_points,
h_L_points_Cstar, accent_h_map,
h_Lspace_Cmax, monotone_h_map,
Lspace_Cmax_Hmap,
Lpoints_Cstar_Hmap,
) )
ax_h_map = {}
fig, axes = plt.subplots( def plot_hue_chroma_bounds() -> None:
name_h_map = {}
ax_h_map = {}
fig, axes = plt.subplots(
len(monotone_h_map), len(monotone_h_map),
1, 1,
sharex=True, sharex=True,
sharey=True, sharey=True,
figsize=(4, 8) figsize=(4, 10)
) )
for i, h_str in enumerate(h_L_points_Cstar): for i, h_str in enumerate(Lpoints_Cstar_Hmap):
_h = h_map[h_str] _h = h_map[h_str]
L_points_Cstar = h_L_points_Cstar[h_str]
L_space_Cmax = h_Lspace_Cmax[h_str] l_space_Cmax = Lspace_Cmax_Hmap[h_str]
l_points_Cstar = Lpoints_Cstar_Hmap[h_str]
if _h not in ax_h_map: if _h not in ax_h_map:
ax_h_map[_h] = axes[i] ax_h_map[_h] = axes[i]
ax = ax_h_map[_h] ax = ax_h_map[_h]
# plot Cmax and Cstar if _h not in name_h_map:
ax.plot(L_space, L_space_Cmax, c="b", alpha=0.2) name_h_map[_h] = []
ax.plot(L_points, L_points_Cstar, alpha=0.7) name_h_map[_h].append(h_str)
ax.title.set_text(f"Hue [${_h}$]")
axes[-1].set_xlabel("Lightness (%)")
axes[-1].set_xticks([L_points[0], L_points[-1]])
fig.tight_layout()
fig.subplots_adjust(top=0.9)
plt.suptitle("$C^*$ curves for hue groups")
plt.show()
ax_h_map = {}
fig, axes = plt.subplots(
len(monotone_h_map),
1,
sharex=True,
sharey=True,
figsize=(5, 10)
)
for i, h_str in enumerate(h_L_points_Cstar):
_h = h_map[h_str]
L_points_Cstar = h_L_points_Cstar[h_str]
L_space_Cmax = h_Lspace_Cmax[h_str]
if _h not in ax_h_map:
ax_h_map[_h] = axes[i]
ax = ax_h_map[_h]
# plot Cmax and Cstar # plot Cmax and Cstar
ax.plot(L_space, L_space_Cmax, c="b", alpha=0.2, label='Cmax') ax.plot(L_space, l_space_Cmax, c="g", alpha=0.3, label="Cmax")
ax.plot(L_points, L_points_Cstar, alpha=0.7, label='C*')
if h_str in v111_hC_points: cstar_label = f"{'accent' if h_str in accent_h_map else 'monotone'} C*"
ax.scatter(v111_L_space, v111_hC_points[h_str], s=4, label='Cv111') ax.plot(L_points, l_points_Cstar, alpha=0.7, label=cstar_label)
if h_str in h_ctrl_L_C: ax.title.set_text(f"Hue [${_h}$] - {'|'.join(name_h_map[_h])}")
cpts = h_ctrl_L_C[h_str]
cpt_x, cpt_y = cpts[:, 0], cpts[:, 1]
h_w = h_weights.get(h_str, 1)
P0, P1, P2 = cpts[0], cpts[1], cpts[2] axes[-1].set_xlabel("Lightness (%)")
d0 = 2 * h_w * (P1 - P0) axes[-1].set_xticks([L_points[0], L_points[-1]])
d2 = 2 * h_w * (P2 - P1)
handle_scale = 0.25 fig.tight_layout()
H0 = P0 + handle_scale * d0 fig.subplots_adjust(top=0.9)
H2 = P2 - handle_scale * d2
# ax.plot([P0[0], H0[0]], [P0[1], H0[1]], color='tab:blue', lw=1) handles, labels = axes[-1].get_legend_handles_labels()
# ax.plot([P2[0], H2[0]], [P2[1], H2[1]], color='tab:orange', lw=1) unique = dict(zip(labels, handles))
fig.legend(unique.values(), unique.keys(), loc='lower center', bbox_to_anchor=(0.5, -0.06), ncol=3)
ax.plot(cpt_x, cpt_y, '--', color='gray', lw=1, label='Bezier polygon') plt.suptitle("$C^*$ curves for hue groups")
ax.scatter(cpt_x, cpt_y, color='red', zorder=5, s=2, label='Control points') plt.show()
ax.title.set_text(f"Hue [${_h}$]")
axes[-1].set_ylabel("Chroma (C)")
axes[-1].set_xlabel("Lightness (%)")
axes[-1].set_xticks([L_points[0], 50, 65, L_points[-1]])
fig.tight_layout()
fig.subplots_adjust(top=0.9)
handles, labels = axes[-1].get_legend_handles_labels()
unique = dict(zip(labels, handles))
fig.legend(unique.values(), unique.keys(), loc='lower center', bbox_to_anchor=(0.5, -0.06), ncol=3)
plt.suptitle("$C^*$ curves for hue groups + v111 5% lightness")
plt.show()
def plot_hue_chroma_star() -> None:
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
# uncomment to preview 5 core term colors
colors = accent_h_map.keys()
#colors = set(["red", "orange", "yellow", "green", "blue"])
from numpy import arctan2, degrees for h_str in Lpoints_Cstar_Hmap:
if h_str not in accent_h_map or h_str not in colors:
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
for h_str in h_L_points_Cstar:
if h_str not in accent_h_map:
continue continue
ax.fill_between(L_points, h_L_points_Cstar[h_str], alpha=0.2, color='grey', label=h_str) ax.fill_between(
L_points,
Lpoints_Cstar_Hmap[h_str],
alpha=0.2,
color='grey',
label=h_str
)
x, y = L_points, h_L_points_Cstar[h_str] x, y = L_points, Lpoints_Cstar_Hmap[h_str]
n = int(0.5*len(x)) n = int(0.45*len(x))
ax.text(x[n], y[n]-0.01, h_str, rotation=10, va='center', ha='left') ax.text(x[n], y[n]-0.01, h_str, rotation=10, va='center', ha='left')
ax.set_xlabel("Lightness (%)") ax.set_xlabel("Lightness (%)")
ax.set_xticks([L_points[0], 45, 50, 55, 60, 65, 70, L_points[-1]]) ax.set_xticks([L_points[0], 45, 50, 55, 60, 65, 70, L_points[-1]])
plt.suptitle("$C^*$ curves (v1.3.0)") plt.suptitle("$C^*$ curves (v1.4.0)")
fig.show() fig.show()
def palette_image(palette, cell_size=40, keys=None):
if keys is None:
names = list(palette.keys())
else:
names = keys
row_count = len(names)
col_counts = [len(palette[n]) for n in names]
max_cols = max(col_counts)
h = row_count * cell_size
w = max_cols * cell_size
img = np.ones((h, w, 3), float)
lightness_keys_per_row = []
for r, name in enumerate(names):
shades = palette[name]
keys = sorted(shades.keys())
lightness_keys_per_row.append(keys)
for c, k in enumerate(keys):
col = Color(shades[k]).convert("srgb").fit(method="clip")
rgb = [col["r"], col["g"], col["b"]]
r0, r1 = r * cell_size, (r + 1) * cell_size
c0, c1 = c * cell_size, (c + 1) * cell_size
img[r0:r1, c0:c1, :] = rgb
return img, names, lightness_keys_per_row, cell_size, max_cols
def show_palette(palette, cell_size=40, keys=None):
img, names, keys, cell_size, max_cols = palette_image(palette, cell_size, keys=keys)
fig_w = img.shape[1] / 100
fig_h = img.shape[0] / 100
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
ax.imshow(img, interpolation="none", origin="upper")
ax.set_xticks([])
ytick_pos = [(i + 0.5) * cell_size for i in range(len(names))]
ax.set_yticks(ytick_pos)
ax.set_yticklabels(names)
ax.set_ylim(img.shape[0], 0) # ensures rows render correctly without half-cells
plt.show()
if __name__ == "__main__":
from monobiome.constants import OKLCH_hL_dict
keys = [
"alpine",
"badlands",
"chaparral",
"savanna",
"grassland",
"reef",
"tundra",
"heathland",
"moorland",
"orange",
"yellow",
"green",
"cyan",
"blue",
"violet",
"magenta",
"red",
]
term_keys = [
"alpine",
"badlands",
"chaparral",
"savanna",
"grassland",
"tundra",
"red",
"orange",
"yellow",
"green",
"blue",
]
show_palette(OKLCH_hL_dict, cell_size=25, keys=keys)
# show_palette(OKLCH_hL_dict, cell_size=1, keys=term_keys)

238
monobiome/scheme.py Normal file
View File

@@ -0,0 +1,238 @@
from functools import cache
from collections.abc import Callable
from coloraide import Color
from monobiome.util import oklch_distance
from monobiome.palette import compute_hlc_map
from monobiome.constants import (
accent_h_map,
monotone_h_map,
)
@cache
def compute_dma_map(
dT: float,
metric: Callable | None = None
) -> dict[str, dict]:
"""
For threshold `dT`, compute the nearest accent shades that exceed that
threshold for every monotone shade.
Returns: map of minimum constraint satisfying accent colors for monotone
spectra
{
"alpine": {
"oklch( ... )": {
"red": *nearest oklch >= dT from M base*,
...
},
...
},
...
}
"""
if metric is None:
metric = oklch_distance
oklch_hlc_map = compute_hlc_map("oklch")
oklch_color_map = {
c_name: [Color(c_str) for c_str in c_str_dict.values()]
for c_name, c_str_dict in oklch_hlc_map.items()
}
dT_mL_acol_map = {}
for m_name in monotone_h_map:
mL_acol_map = {}
m_colors = oklch_color_map[m_name]
for m_color in m_colors:
acol_min_map = {}
for a_name in accent_h_map:
a_colors = oklch_color_map[a_name]
oklch_dists = filter(
lambda d: (d[1] - dT) >= 0,
[
(ac, metric(m_color, ac))
for ac in a_colors
]
)
oklch_dists = list(oklch_dists)
if oklch_dists:
min_a_color = min(oklch_dists, key=lambda t: t[1])[0]
acol_min_map[a_name] = min_a_color
# make sure the current monotone level has *all* accents; o/w
# ignore
if len(acol_min_map) < len(accent_h_map):
continue
mL = m_color.coords()[0]
mL_acol_map[int(mL*100)] = acol_min_map
dT_mL_acol_map[m_name] = mL_acol_map
return dT_mL_acol_map
def generate_scheme_groups(
mode: str,
biome: str,
metric: str,
distance: float,
l_base: int,
l_step: int,
fg_gap: int,
grey_gap: int,
term_fg_gap: int,
accent_color_map: dict[str, str],
) -> tuple[dict[str, str], ...]:
"""
Parameters:
mode: one of ["dark", "light"]
biome: biome setting
metric: one of ["wcag", "oklch", "lightness"]
"""
metric_map = {
"wcag": lambda mc,ac: ac.contrast(mc, method='wcag21'),
"oklch": lambda mc,ac: mc.distance(ac, space="oklch"),
"lightness": lambda mc,ac: abs(mc.coords()[0]-ac.coords()[0])*100,
}
metric_func = metric_map[metric]
dT_mL_acol_map = compute_dma_map(distance, metric=metric_func)
Lma_map = {
m_name: mL_acol_dict[l_base]
for m_name, mL_acol_dict in dT_mL_acol_map.items()
if l_base in mL_acol_dict
}
# the `mL_acol_dict` only includes lightnesses where all accent colors were
# within threshold. Coverage here will be partial if, at the `mL`, there is
# some monotone base that doesn't have all accents within threshold. This
# can happen at the edge, e.g., alpine@L15 has all accents w/in the
# distance, but the red accent was too far under tundra@L15, so there's no
# entry. This particular case is fairly rare; it's more likely that *all*
# monotones are undefined. Either way, both such cases lead to partial
# scheme coverage.
if len(Lma_map) < len(monotone_h_map):
print(f"Warning: partial scheme coverage for {l_base=}@{distance=}")
if biome not in Lma_map:
print(f"Biome {biome} unable to meet {metric} constraints")
accent_colors = Lma_map.get(biome, {})
meta_pairs = [
("mode", mode),
("biome", biome),
("metric", metric),
("distance", distance),
("l_base", l_base),
("l_step", l_step),
]
# note how selection_bg steps up by `l_step`, selection_fg steps down by
# `l_step` (from their respective bases)
term_pairs = [
("background", f"f{{{{{biome}.l{l_base}}}}}"),
("selection_bg", f"f{{{{{biome}.l{l_base+l_step}}}}}"),
("selection_fg", f"f{{{{{biome}.l{l_base+term_fg_gap-l_step}}}}}"),
("foreground", f"f{{{{{biome}.l{l_base+term_fg_gap}}}}}"),
("cursor", f"f{{{{{biome}.l{l_base+term_fg_gap-l_step}}}}}"),
("cursor_text", f"f{{{{{biome}.l{l_base+l_step}}}}}"),
]
monotone_pairs = []
monotone_pairs += [
(f"bg{i}", f"f{{{{{biome}.l{l_base+i*l_step}}}}}")
for i in range(4)
]
monotone_pairs += [
(f"fg{3-i}", f"f{{{{{biome}.l{fg_gap+l_base+i*l_step}}}}}")
for i in range(4)
]
accent_pairs = [
("black", f"f{{{{{biome}.l{l_base}}}}}"),
("grey", f"f{{{{{biome}.l{l_base+grey_gap}}}}}"),
("white", f"f{{{{{biome}.l{l_base+term_fg_gap-l_step}}}}}"),
]
for color_name, mb_accent in accent_color_map.items():
aL = int(100*accent_colors[mb_accent].coords()[0])
accent_pairs.append(
(
color_name,
f"f{{{{{mb_accent}.l{aL}}}}}"
)
)
return meta_pairs, term_pairs, monotone_pairs, accent_pairs
def generate_scheme(
mode: str,
biome: str,
metric: str,
distance: float,
l_base: int,
l_step: int,
fg_gap: int,
grey_gap: int,
term_fg_gap: int,
full_color_map: dict[str, str],
term_color_map: dict[str, str],
vim_color_map: dict[str, str],
) -> str:
meta, _, mt, ac = generate_scheme_groups(
mode, biome, metric, distance,
l_base, l_step,
fg_gap, grey_gap, term_fg_gap,
full_color_map
)
_, term, _, term_norm_ac = generate_scheme_groups(
mode, biome, metric, distance,
l_base + l_step, l_step,
fg_gap, grey_gap, term_fg_gap,
term_color_map
)
_, _, _, term_bright_ac = generate_scheme_groups(
mode, biome, metric, distance,
l_base + l_step + 10, l_step,
fg_gap, grey_gap, term_fg_gap,
term_color_map
)
_, _, vim_mt, vim_ac = generate_scheme_groups(
mode, biome, metric, distance,
l_base + l_step, l_step,
fg_gap, grey_gap, term_fg_gap,
vim_color_map
)
def pair_strings(pair_list: list[tuple[str, str]]) -> list[str]:
return [
f"{lhs:<12} = \"{rhs}\""
for lhs, rhs in pair_list
]
scheme_pairs = []
scheme_pairs += pair_strings(meta)
scheme_pairs += pair_strings(mt)
scheme_pairs += pair_strings(ac)
scheme_pairs += ["", "[term]"]
scheme_pairs += pair_strings(term)
scheme_pairs += ["", "[term.normal]"]
scheme_pairs += pair_strings(term_norm_ac)
scheme_pairs += ["", "[term.bright]"]
scheme_pairs += pair_strings(term_bright_ac)
scheme_pairs += ["", "[vim]"]
scheme_pairs += pair_strings(vim_mt)
scheme_pairs += pair_strings(vim_ac)
return "\n".join(scheme_pairs)

View File

@@ -1,140 +0,0 @@
def compute_dma_map(dT, metric=None):
"""
For threshold `dT`, compute the nearest accent shades
that exceed that threshold for every monotone shade.
Returns:
Map like
{ "alpine": {
"oklch( ... )": {
"red": *nearest oklch >= dT from M base*
"""
if metric is None:
metric = lambda mc,ac: mc.distance(ac, space="oklch")
oklch_color_map = {
c_name: [Color(c_str) for c_str in c_str_dict.values()]
for c_name, c_str_dict in oklch_hL_dict.items()
}
dT_mL_acol_map = {}
for m_name in monotone_h_map:
mL_acol_map = {}
m_colors = oklch_color_map[m_name]
for m_color in m_colors:
acol_min_map = {}
for a_name in accent_h_map:
a_colors = oklch_color_map[a_name]
oklch_dists = filter(
lambda d: (d[1] - dT) > 0,
[
(ac, metric(m_color, ac))
for ac in a_colors
]
)
oklch_dists = list(oklch_dists)
if oklch_dists:
min_a_color = min(oklch_dists, key=lambda t: t[1])[0]
acol_min_map[a_name] = min_a_color
# make sure the current monotone level has *all* accents; o/w ignore
if len(acol_min_map) < len(accent_h_map):
continue
mL = m_color.coords()[0]
mL_acol_map[int(mL*100)] = acol_min_map
dT_mL_acol_map[m_name] = mL_acol_map
return dT_mL_acol_map
mode = "dark" # ["dark", "light"]
biome = "alpine" # [ ... ]
metric = "wcag" # ["wcag", "oklch"]
metric_map = {
"wcag": lambda mc,ac: ac.contrast(mc, method='wcag21'),
"oklch": lambda mc,ac: mc.distance(ac, space="oklch"),
}
metric_func = metric_map[metric]
term_color_map = {
"red": "red",
"organge": "orange",
"yellow": "yellow",
"green": "green",
"cyan": "green",
"blue": "blue",
"violet": "blue",
"magenta": "red",
}
L = 20
d = 4.5
I = 5
fg_gap = 50
grey_gap = 30
dT_mL_acol_map = compute_dma_map(d, metric=metric_func)
Lma_map = {
m_name: mL_acol_dict[L]
for m_name, mL_acol_dict in dT_mL_acol_map.items()
if L in mL_acol_dict
}
# the `mL_acol_dict` only includes lightnesses where all accent
# colors were within threshold. Coverage here will be partial if,
# at the `mL`, there is some monotone base that doesn't have all
# accents within threshold. This can happen at the edge, e.g., alpine@L15
# has all accents w/in the distance, but the red accent was too far under
# tundra@L15, so there's no entry. This particular case is fairly rare; it's
# more likely that *all* monotones are undefined. Either way, both such
# cases lead to partial scheme coverage.
if len(Lma_map) < len(monotone_h_map):
print(f"Warning: partial scheme coverage for {mL=}@{dT=}")
if biome not in Lma_map:
print(f"Biome {biome} unable to meet {metric} constraints")
accent_colors = Lma_map.get(biome, {})
scheme_pairs = []
for i in range(4):
scheme_pairs.append(
(
f"bg{i}",
f"f{{{{{biome}.l{L+i*I}}}}}"
)
)
for i in range(4):
scheme_pairs.append(
(
f"fg{3-i}",
f"f{{{{{biome}.l{fg_gap+L+i*I}}}}}"
)
)
for term_color, mb_accent in term_color_map.items():
aL = int(100*accent_colors[mb_accent].coords()[0])
scheme_pairs.append(
(
f"{term_color}",
f"f{{{{{mb_accent}.l{aL}}}}}"
)
)
term_fg_gap = 60
scheme_pairs.extend([
("background", f"f{{{{{biome}.l{L}}}}}"),
("selection_bg", f"f{{{{{biome}.l{L+I}}}}}"),
("selection_fg", f"f{{{{{biome}.l{L+term_fg_gap}}}}}"),
("foreground", f"f{{{{{biome}.l{L+term_fg_gap+I}}}}}"),
])
scheme_toml = [
f"{lhs:<12} = {rhs:<16}"
for lhs, rhs in scheme_pairs
]

10
monobiome/util.py Normal file
View File

@@ -0,0 +1,10 @@
from types import GenericAlias
from argparse import ArgumentParser, _SubParsersAction
from coloraide import Color
_SubParsersAction.__class_getitem__ = classmethod(GenericAlias)
_SubparserType = _SubParsersAction[ArgumentParser]
def oklch_distance(mc: Color, ac: Color) -> float:
return mc.distance(ac, space="oklch")

View File

@@ -1,39 +0,0 @@
# put together objects for output formats
toml_lines = []
oklch_hL_dict = {}
for h_str, L_points_Cstar in h_L_points_Cstar.items():
_h = h_map[h_str]
toml_lines.append(f"[{h_str}]")
oklch_hL_dict[h_str] = {}
for _L, _C in zip(L_points, L_points_Cstar):
oklch = Color('oklch', [_L/100, _C, _h])
srgb = oklch.convert('srgb')
hex_str = srgb.to_string(hex=True)
l, c, h = oklch.convert('oklch').coords()
# oklch_str = oklch.to_string(percent=False)
oklch_str = f"oklch({l*100:.1f}% {c:.4f} {h:.1f})"
toml_lines.append(f'l{_L} = "{hex_str}"')
oklch_hL_dict[h_str][_L] = oklch_str
toml_lines.append("")
# write files -- QBR = "quadratic bezier rational"
PALETTE_DIR = "palettes"
toml_content = '\n'.join(toml_lines)
with Path(PALETTE_DIR, 'monobiome-vQBRsn-130.toml').open('w') as f:
f.write(toml_content)
print("[TOML] written")
with Path(PALETTE_DIR, 'monobiome-vQBRsn-130-oklch.json').open('w') as f:
json.dump(oklch_hL_dict, f)
print("[JSON] written")

View File

@@ -1,7 +1,11 @@
[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[project] [project]
name = "monobiome" name = "monobiome"
version = "1.2.0" version = "1.4.0"
description = "Add your description here" description = "Monobiome color palette"
readme = "README.md" readme = "README.md"
requires-python = ">=3.12" requires-python = ">=3.12"
dependencies = [ dependencies = [
@@ -21,3 +25,39 @@ dependencies = [
dev = [ dev = [
"ipykernel>=7.0.1", "ipykernel>=7.0.1",
] ]
[project.scripts]
monobiome = "monobiome.__main__:main"
[project.urls]
Homepage = "https://doc.olog.io/monobiome"
Documentation = "https://doc.olog.io/monobiome"
Repository = "https://git.olog.io/olog/monobiome"
Issues = "https://git.olog.io/olog/monobiome/issues"
[tool.setuptools.packages.find]
include = ["monobiome*"]
[tool.setuptools.package-data]
"monobiome" = ["data/*.toml"]
[tool.ruff]
line-length = 79
[tool.ruff.lint]
select = ["ANN", "E", "F", "UP", "B", "SIM", "I", "C4", "PERF"]
[tool.ruff.lint.isort]
length-sort = true
order-by-type = false
force-sort-within-sections = false
[tool.ruff.lint.per-file-ignores]
"tests/**" = ["S101"]
"**/__init__.py" = ["F401"]
[tool.ruff.format]
quote-style = "double"
indent-style = "space"
docstring-code-format = true

4
uv.lock generated
View File

@@ -622,8 +622,8 @@ wheels = [
[[package]] [[package]]
name = "monobiome" name = "monobiome"
version = "1.2.0" version = "1.4.0"
source = { virtual = "." } source = { editable = "." }
dependencies = [ dependencies = [
{ name = "coloraide" }, { name = "coloraide" },
{ name = "imageio", extra = ["ffmpeg"] }, { name = "imageio", extra = ["ffmpeg"] },