Files
monobiome/monobiome/plotting.py

222 lines
6.0 KiB
Python

from importlib.metadata import version
import numpy as np
import matplotlib.pyplot as plt
from coloraide import Color
from matplotlib.collections import LineCollection
from monobiome.palette import compute_hlc_map
from monobiome.constants import (
h_map,
L_space,
L_points,
accent_h_map,
monotone_h_map,
Lspace_Cmax_Hmap,
max_Cstar_Horder,
Lpoints_Cstar_Hmap,
)
VERSION = version("monobiome")
def plot_hue_chroma_bounds() -> tuple[plt.Figure, plt.Axes]:
name_h_map = {}
ax_h_map = {}
fig, axes = plt.subplots(
len(monotone_h_map),
1,
sharex=True,
sharey=True,
figsize=(4, 10)
)
for i, h_str in enumerate(Lpoints_Cstar_Hmap):
_h = h_map[h_str]
l_space_Cmax = Lspace_Cmax_Hmap[h_str]
l_points_Cstar = Lpoints_Cstar_Hmap[h_str]
if _h not in ax_h_map:
ax_h_map[_h] = axes[i]
ax = ax_h_map[_h]
if _h not in name_h_map:
name_h_map[_h] = []
name_h_map[_h].append(h_str)
# plot Cmax and Cstar
ax.plot(L_space, l_space_Cmax, c="g", alpha=0.3, label="Cmax")
cstar_label = f"{'accent' if h_str in accent_h_map else 'monotone'} C*"
ax.plot(L_points, l_points_Cstar, alpha=0.7, label=cstar_label)
ax.title.set_text(f"Hue [${_h}$] - {'|'.join(name_h_map[_h])}")
axes[-1].set_xlabel("Lightness (%)")
axes[-1].set_xticks([L_points[0], L_points[-1]])
fig.tight_layout()
fig.subplots_adjust(top=0.9)
handles, labels = axes[-1].get_legend_handles_labels()
unique = dict(zip(labels, handles, strict=True))
fig.legend(
unique.values(),
unique.keys(),
loc='lower center',
bbox_to_anchor=(0.5, -0.06),
ncol=3
)
plt.suptitle(f"$C^*$ curves for hue groups (v{VERSION})")
return fig, axes
def plot_hue_chroma_star() -> tuple[plt.Figure, plt.Axes]:
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
colors = accent_h_map.keys()
# uncomment to preview just the 5 core term colors
# colors = set(["red", "orange", "yellow", "green", "blue"])
for h_str, _ in max_Cstar_Horder:
Lpoints_Cstar = Lpoints_Cstar_Hmap[h_str]
if h_str not in accent_h_map or h_str not in colors:
continue
_h = h_map[h_str]
h_colors = [
Color('oklch', [_l/100, _c, _h]).convert("srgb")
for _l, _c in zip(L_points, Lpoints_Cstar, strict=True)
]
x = np.asarray(L_points)
y = np.asarray(Lpoints_Cstar)
pts = np.column_stack([x, y]).reshape(-1, 1, 2)
segs = np.concatenate([pts[:-1], pts[1:]], axis=1)
rgb = np.asarray(h_colors)
seg_colors = (rgb[:-1] + rgb[1:]) / 2
lc = LineCollection(segs, colors=seg_colors, linewidth=3,
capstyle="round", joinstyle="round",
label=h_str)
ax.add_collection(lc)
ax.autoscale_view()
ax.set_xlabel("Lightness (%)")
ax.set_xticks([L_points[0], 45, 50, 55, 60, 65, 70, L_points[-1]])
plt.suptitle(f"$C^*$ curves (v{VERSION})")
return fig, ax
def palette_image(
palette: dict[str, dict[int, str]],
cell_size: int = 40,
keys: list[str] | None = None
) -> tuple[np.ndarray, list[str], list[list[int]]]:
names = list(palette.keys()) if keys is None else keys
row_count = len(names)
col_counts = [len(palette[n]) for n in names]
max_cols = max(col_counts)
h = row_count * cell_size
w = max_cols * cell_size
img = np.ones((h, w, 3), float)
lightness_keys_per_row = []
for r, name in enumerate(names):
shades = palette[name]
lkeys = sorted(shades.keys())
lightness_keys_per_row.append(lkeys)
for c, k in enumerate(lkeys):
col = Color(shades[k]).convert("srgb").fit(method="clip")
rgb = [col["r"], col["g"], col["b"]]
r0, r1 = r * cell_size, (r + 1) * cell_size
c0, c1 = c * cell_size, (c + 1) * cell_size
img[r0:r1, c0:c1, :] = rgb
return img, names, lightness_keys_per_row
def show_palette(
palette: dict[str, dict[int, str]],
cell_size: int = 40,
keys: list[str] | None = None,
show_labels: bool = True,
dpi: int = 100,
) -> tuple[plt.Figure, plt.Axes]:
img, names, _ = palette_image(palette, cell_size, keys=keys)
fig_w = img.shape[1] / 100
fig_h = img.shape[0] / 100
if show_labels:
fig, ax = plt.subplots(figsize=(fig_w, fig_h), dpi=dpi)
ax.imshow(img, interpolation="none", origin="upper")
ax.set_xticks([])
ytick_pos = [(i + 0.5) * cell_size for i in range(len(names))]
ax.set_yticks(ytick_pos)
ax.set_yticklabels(names)
ax.set_ylim(img.shape[0], 0) # ensures rows render w/o half-cells
return fig, ax
fig = plt.figure(figsize=(fig_w, fig_h), dpi=dpi, frameon=False)
ax = fig.add_axes((0, 0, 1, 1), frame_on=False)
ax.imshow(
img,
interpolation="nearest",
origin="upper",
extent=(0, img.shape[1], img.shape[0], 0),
aspect="auto",
)
ax.set_xlim(0, img.shape[1])
ax.set_ylim(img.shape[0], 0)
ax.axis("off")
fig.subplots_adjust(0, 0, 1, 1, hspace=0, wspace=0)
return fig, ax
if __name__ == "__main__":
keys = [
"alpine",
"badlands",
"chaparral",
"savanna",
"grassland",
"reef",
"tundra",
"heathland",
"moorland",
"orange",
"yellow",
"green",
"cyan",
"blue",
"violet",
"magenta",
"red",
]
term_keys = [
"alpine",
"badlands",
"chaparral",
"savanna",
"grassland",
"tundra",
"red",
"orange",
"yellow",
"green",
"blue",
]
hlc_map = compute_hlc_map("oklch")
show_palette(hlc_map, cell_size=25, keys=keys)
# show_palette(hlc_map, cell_size=1, keys=term_keys)